The everyday heroes
of transplant medicine

The surgeons, the coordinators,
and the patients

Roger Tricker climbed Mt. Lassen
the summer after he underwent
a double lung transplant operation
at UCLA Medical Center.
The first high-resolution MRI study of methamphetamine addicts vividly reveals what UCLA scientists call “a forest fire of damage” to the brain’s reward, emotion and memory systems. The Journal of Neuroscience published the findings on June 30, 2004.

“We expected some brain abnormalities but not so much damage,” says Dr. Paul Thompson, associate professor of neurology. “We saw about 10 times the cell loss caused by normal aging in a healthy brain.”

Dr. Edythe London, a professor at the UCLA Neuropsychiatric Institute, imaged the brains of 22 people who had abused methamphetamine for 10 years and then imaged the brains of 21 age-matched controls. Both groups also performed a series of memory tests.

The drug abusers performed significantly worse on the memory tests than healthy people their age. In addition, the addicts showed an 11 percent tissue deficit in the limbic region, the brain’s reward and emotion center, and an 8 percent deficit in the hippocampus, the brain’s memory center. The tissue shortfall directly correlated with the level of memory impairment.

“The addicts’ brain tissue loss resembled that of Alzheimer’s disease,” says Thompson. “Memory, emotion and reward areas were affected the most, while other parts of the brain remained intact.”

White matter, the bulky nerve fibers that connect different regions, was severely inflamed, making the addicts’ brains a whopping 10 percent larger than normal.

“We think this inflammation results from repeated drug abuse,” says Thompson. “The brain inflames when its glial cells multiply in response to injury.”
UCLA Study Calls for Earlier Treatment of Fungal Infections in Critically Ill Newborns

A UCLA study demonstrates that early treatment can mean the difference between life and death for high-risk babies born with fungal infections.

Presented May 1, 2004, at the Pediatric Academic Society's annual meeting, the findings show that the infant's likelihood of death rose with each day physicians delayed antifungal therapy after the newborn's first positive culture.

"Because fungal infections are considered 'slow-moving,' the standard protocol has been to wait for laboratory results before starting treatment," explains Dr. Heather Cahan, neonatology fellow at Mattel Children's Hospital at UCLA. "We wanted to investigate how long physicians are waiting to start treatment and if this adversely affects the baby's outcome."

The UCLA team examined the histories of 68 patients with 77 episodes of invasive fungal infections at a neonatal intensive care unit from 1998 to 2002. Thirty-four percent of the newborns died.

After lab results confirmed a positive culture, physicians waited an average of 10 days before starting antifungal treatment. The infant's risk of death rose 11 percent with each day of delayed therapy.

"We found that treatment delay was the most important factor in newborns' mortality rate from fungal infections," Cahan says. "We recommend that neonatologists start antifungal treatment within 48 hours of drawing cultures in high-risk infants."

New Therapy Fights Resistance to Leukemia Pill, Targets Mutations That Cause Relapse

UCLA's Jonsson Cancer Center scientists discovered that an experimental therapy improves survival in an animal model for drug-resistant chronic myeloid leukemia (CML). With early human studies already underway at UCLA, the findings were published July 16, 2004, in Science.

Gleevec targets a cancer-causing gene linked to CML, which strikes more than 70,000 adults worldwide each year. Some 20 percent of patients develop secondary genetic mutations that prevent Gleevec from binding to the gene and cause the leukemia to recur.

Developed by Bristol-Myers Squibb, the new compound, BMS-354825, is also administered in a pill form. It targets and binds to 14 of the 15 secondary mutations in the CML gene.

"In the future, we may combine therapies to override the resistance mechanisms that allow cancer to evade individual therapies," says Dr. Neil Shah, assistant professor of hematology/oncology. "We may treat cancer like HIV, with a cocktail of drugs."

Future studies may eventually pair Gleevec with the new drug, if it proves to be safe and effective in human clinical trials.
UCLA scientists have discovered that lean people experience a huge nighttime surge of ghrelin that obese people do not. Ghrelin, the hormone that stimulates hunger, helps the body control its weight as part of a complex system that regulates food intake and energy output.

Published June 28, 2004, in the Proceedings of the National Academy of Sciences, the UCLA research suggests that obesity suppresses the ghrelin spike.

“We expected to find a different ghrelin pattern in obese people, but the big shock was that it happened at night,” says Dr. Julio Licinio, professor of psychiatry and a senior researcher at the UCLA Neuropsychiatric Institute.

“You’d expect the blood levels of the heavier men to contain more hunger hormone, not less. Something must be overriding obese persons’ ghrelin,” he says.

Cells in the stomach secrete ghrelin into the blood, where it rises and falls in predictable daily patterns, spiking before meals when you are hungry and dropping after you eat.

Licinio’s colleagues monitored ghrelin patterns in five lean men and five obese men every seven minutes for 24 hours. The team collected more than 200 blood samples per subject.

The scientists discovered a giant burst of ghrelin in the lean men’s blood between midnight and 6 a.m. that surpassed pre-mealtime peaks of the hormone. Yet ghrelin levels remained flat in the obese men.

“The most powerful ghrelin surge was missing in the obese men, suggesting that their regulatory system has gone awry or is no longer able to listen to its own cues,” Licinio says.

The team’s findings may point to new targets for treating obesity, says Licinio.

“It’s possible that obese people have developed biological mechanisms that make them resistant to their own hormones,” he says. “We must try to solve this mystery and explore new drugs to make them more sensitive to their bodies’ internal cues.”
Lung Inflammation Linked to Heart Disease, UCLA/Penn Research Discovers

Researchers from UCLA and the University of Pennsylvania found that patients with an inflammatory lung disease called pulmonary fibrosis are four times more likely to develop heart disease related to coronary artery disease.

Published March 8, 2004, in the Archives of Internal Medicine, the findings observed that both diseases cause inflammation that can lead to tissue scarring and eventual blockage of coronary arteries.

“We were very surprised to see the large number of pulmonary fibrosis patients who also developed advanced coronary artery disease,” says Dr. David Zisman, director of the Interstitial Lung Disease Program and assistant professor of pulmonary and critical care medicine.

The researchers reviewed the coronary angiograms of 630 patients evaluated for lung transplants at the University of Pennsylvania. They discovered that pulmonary fibrosis put patients at twice the risk for coronary artery disease and at four times the risk for more extensive heart disease.

“Our next step will be to examine the inflammation mechanisms that underlie development of these two diseases,” says Dr. Robert Strieter, vice chair of medicine and division chief of pulmonary and critical care medicine.

African Americans and Asian Americans Less Likely to Seek a Medical Specialist

A UCLA study discovered that African American and Asian American patients are less likely than Caucasians to prefer a medical specialist for initial care. Published May 1, 2004, in the American Journal of Medicine, the findings suggest a possible explanation for racial differences in health care.

“Researchers have struggled to understand why African Americans and other minorities receive worse health care and have poorer health status,” says Dr. Mitchell Wong, assistant professor of medicine. “Obvious reasons, such as income and health insurance, only partly explain these disparities.”

Wong’s team randomly selected 646 patients from three academic-based internal medicine outpatient practices in Los Angeles and New York City. Of those, 48 percent were Caucasian, 29 percent African American, 9 percent Latino and 9 percent Asian American.

Researchers asked patients their preference for seeing a specialist for the health problem that brought them to their physician’s office, as well as for three hypothetical scenarios: two weeks of new chest pain, two months of knee pain and a four-week rash.

Patients who were older, possessed Medicaid insurance or had more confidence in their primary-care physician’s ability to diagnose or treat their illnesses were also less likely to prefer a specialist for their initial care. In contrast, patients who knew which tests or treatments they needed or had been to a specialist in the past year were more likely to seek a specialist.

After adjusting for these variables, researchers found that African Americans and Asian Americans still were less likely than Caucasians to prefer initial treatment from a specialist.

Wong suggests that unexamined factors, such as negative attitudes or less understanding about specialists, may illuminate the racial disparities.

“Seeing a specialist is often the first step toward obtaining advanced therapies,” says Wong. “So our findings may explain why African Americans are less likely to receive certain treatments, such as cardiac bypass surgery or chemotherapy.”
excellence on many fronts

The David Geffen School of Medicine at UCLA strives for excellence at all times, and our success is evaluated by several different measures. We undergo an accreditation process conducted by the Liaison Committee on Medical Education (LCME) every seven years. This exhaustive review of our personnel, curriculum, research, and educational programs requires a full year of preparation. The actual review, which took place in January 2005, involved a site visit by the LCME and a rigorous self-study by the school of medicine. This critical process was coordinated by Dr. Alan Robinson, executive associate dean and associate vice chancellor for medical sciences, and Joyce Fried, director of special projects. We hope for a full accreditation when the process is complete.

My performance as vice chancellor and dean is evaluated every five years. I am pleased that the process resulted in my reappointment for a third five-year term. The review is useful in that it provides the opportunity to reflect upon and outline goals for the coming term, including setting institutional benchmarks that will sustain our strengths, and identifying areas where we may have additional opportunities to grow and improve. My goals for the next five years include the following:

We must stay true to our mission, the preservation of excellence, and the continued development of our teaching, research, and patient-care programs. Today’s health care environment, with its falling reimbursements and growing patient loads, threatens our academic mission. In light of these difficulties, our mission, calling for the highest scholarship, excellence in research, and translation of the latest advances to our patients, must guide our decision-making.

The endowment of our school by Mr. David Geffen, and the construction of two new hospitals and three research buildings, will go a long way toward helping us achieve our goals of building excellent programs while maintaining financial stability.

We must focus our research resources into the development of interdisciplinary programs that will produce the most beneficial results in the least possible time. Research universities across the country are responding to the pressure of limited finances and the demand for results, as we are. The director of the National Institutes of Health (NIH), Dr. Elias Zerhouni, has presented a clear mandate for research institutions to divest themselves of the traditional barriers among departments, disciplines and schools, and to develop research initiatives that are truly innovative. Given our long-standing goal to develop translational research at UCLA, I am pleased to see that this mandate is shared by the NIH.

We are currently creating a strategic plan for research, a process that is being led by Dr. Leonard Rome, senior associate dean for research. It will involve the medical school, the Division of Life Sciences, and the Division of Physical Sciences in the College of Letters and Science. We are ensuring that we will have a leadership role in this new age of interdisciplinary research.

We must continue the innovation and hard work that have led to a decade of phenomenal success in research funding. Over the past decade, we have risen from 15th to seventh in the nation in NIH funding, and we are now fourth in the nation in overall research funding. I believe this is in part a reflection of the new research buildings we have added to the medical campus, including the Gonda (Goldschmied) Neuroscience and Genetics Research Center and the Ahmanson/Lovelace Brain Imaging building, as well as continued investment to improve and modernize our campus research facilities in the Center for the Health Sciences and Warren Hall. But mostly, this success is a tribute to our outstanding faculty, and their dedication to generating new knowledge in basic and clinical research, and applying this knowledge to superior patient care.

We must develop funding for scholarships for medical and research students. The cost of medical training at UCLA has increased by nearly 25 percent from last year to this. As a state school, we had previously been able to offer a superior medical education at one of the lowest tuition rates in the nation. We will no longer have this advantage, which had helped us attract outstanding students from other top schools. We must develop an endowment portfolio that will allow us to provide ample financial aid for our medical and graduate students, and we intend to meet this challenge. We must complete several very complicated post-earthquake construction projects, including our replacement hospitals and three research buildings. We need to secure additional funding to ensure that this work can continue on schedule.

All schools of medicine must undergo continuous renewal as physicians and scientists retire or move elsewhere. We must seek and recruit the next generation of physicians and scientists who will energize and advance our research, teaching and
patient care so that the David Geffen School of Medicine at UCLA and UCLA Medical Center will carry on and advance our tradition of excellence. I am pleased therefore to be able to announce several key new appointments, including that of Dr. David Callender as the new director of the UCLA Medical Center and associate vice chancellor for the UCLA hospital system. Dr. Callender, a head and neck surgeon with a special interest in cancers of the head and neck, earned his medical degree from Baylor University and an MBA from the University of Houston. He most recently served as executive vice president and chief operating officer at the University of Texas M.D. Anderson Cancer Center. His depth of experience acquired in directing America’s number one cancer hospital makes him exceptionally qualified to lead our hospital system.

I would also like to welcome Dr. Thomas Sibert as the new director and associate vice chancellor of the UCLA Medical Group. Dr. Sibert, a psychiatrist by training, was instrumental in developing the Faculty Practice Group at the University of North Carolina School of Medicine. His immediate task is to create an effective, efficient, coordinated Faculty Practice Group that serves the needs of our patients and faculty.

We are also fortunate to have recruited Mr. Mitchell Creem, associate vice chancellor for finance. Mr. Creem was recruited from the Beth Israel/Deaconess Hospital in Boston, where he served as chief financial officer. His task is to provide the broad financial analysis of our large and diverse academic health center in order for us to plan and invest appropriately. He will also ensure that we have in place the appropriate financial infrastructure to meet the complex challenges of managed care contracting, and billing and collecting for hospital and physician services.

Several additional key leadership appointments have been made in the ranks of our department chairs. Dr. Ronald Busuttil, a world-renowned surgeon and head of our liver transplant program, is now the William Longmire Professor and chair of the Department of Surgery. Dr. Lawrence Zipursky, a brilliant researcher and a member of the Howard Hughes Medical Institute, has taken over as chair of the Department of Biological Chemistry. Dr. Kenneth Phillipson, an expert in cardiovascular physiology, has begun a five-year term as chair of the Department of Physiology.

Finally, Dr. Kenneth Lange, a renowned computational biologist, has been appointed chair of the Department of Human Genetics. The energy and vision of these extraordinary individuals will lead their departments to even greater success and keep UCLA at the cutting edge of science and patient care.

Our medical curriculum, recently completely updated, must undergo continual monitoring and modification if it is to adequately prepare our students for modern medical practice. It is my goal to develop a medical education program that is never finalized, but constantly responding to changes in medical science and practice. The new curriculum was devised by a large group of faculty and under the direction of Senior Associate Dean LuAnn Wilkerson, and the Medical Education Committee of the FEC and its co-chairs Drs. John Tormey and Margaret Stuber.

Finding new sources of private funding is critical to achieving all our goals. I am confident that with our growing base of support, and our ongoing efforts to expand that base, we will succeed and prosper for the next five years—and well beyond.

I am grateful to have another five years to lead this outstanding enterprise, and to continue working with what I consider to be the finest faculty and staff in any academic medical center. I thank you for your continued support as we strive together to make the David Geffen School of Medicine at UCLA the finest school of medicine in the country.
Roger Tricker’s emphysema was so severe that even with an oxygen concentrator, walking from his living room to the bathroom was so exhausting that he had to rest a few minutes before making the return trip. In February, the 60-year-old Santa Maria, Calif., man was put on the waiting list for a double lung transplant. Ever optimistic, he told his physician his goal was to climb Mt. Lassen, 50 miles east of Redding, Calif. “He laughed and said ‘Well, that might be a little ambitious for you,’” Tricker recalls. Now, having ascended Lassen (peak elevation: 10,457 feet) the summer after he exchanged his diseased lungs for healthy ones at UCLA, Tricker—never even much of a hiker before—is considering a climb up Mt. Shasta (14,440 feet).

Rickey Williams wasn’t even 50, and his bodily systems—kidneys, liver, digestive tract, and everything else, it seemed—were shutting down. The medications that had managed his cardiomyopathy for nearly a decade were no longer doing the job. In March, he had a left ventricular assist device implanted—a temporary solution as he waited for a working heart. It arrived just in time. Three weeks after receiving a heart transplant at UCLA, Williams was recovering rapidly and feeling great. “It’s a humbling experience that I can’t even explain,” he says. "Someone was generous enough to give me this gift, and now I have a new life. And for the doctors at UCLA, it’s become such a routinely successful procedure it’s almost like pulling a tooth.”

Obviously, solid organ transplantation remains far more complicated than a tooth extraction, with significant risks, with rejection always looming as a reality. But in the time that UCLA has built its own well-integrated team, with its own well-integrated team, with routine success it’s almost like pulling a tooth.”

UCLA has ushered in many of the advances that have improved the outcomes for solid organ transplantation so dramatically, beginning with the pioneering work of Dr. Paul Terasaki in tissue typing (see the accompanying sidebar). Among other things, UCLA has developed new surgical techniques and has participated in most of the major clinical trials for the new immunosuppression drugs that are reducing rejection risks and enhancing the quality of transplant recipients’ lives.

But at a time when every facility that performs transplants has access to the same drugs, tissue typing procedures and surgical knowledge, UCLA’s results continue to rank among the world’s best, underscoring the importance of its programs’ clinical expertise and experience.

“A large transplant program illustrates what is paradigmatic about an academic medical center: high-complexity cases; integration among basic sciences, clinical research, clinical care and education of residents and fellows; and the synergies that can occur when you bring all of these components together,” says Dr. J. Thomas Rosenthal, chief medical officer for UCLA Healthcare and a urologic surgeon who formerly headed UCLA’s Kidney Transplant Program.

Indeed, Rosenthal notes, each of UCLA’s transplant programs functions as its own well-integrated team, with
Roger Tricker climbed Mt. Lassen the same summer he underwent a double lung transplant operation at UCLA.
experienced professionals in disciplines that include transplant surgery, medicine, interventional radiology, anesthesiology, pharmacology, nursing and social work; the basic and clinical researchers who make possible the next generation of advances; the technicians who operate the blood banks and tissue typing labs; and the coordinators who ensure that the teams run efficiently and effectively.

“Patients do so much better today. There used to be just a handful of anti-rejection medications, some with devastating side effects. Now, there are scores of new medications. Fifteen years ago, if a patient acquired a CMV infection, nothing much could be done and many would die a painful death. Now, patients take a pill for three weeks and they’re fine.”

—Anne Sanford, coordinator for UCLA’s Kidney and Kidney-Pancreas Transplant programs

Many challenges they’ll face in the weeks after the procedure; the type of insurance coverage they have or can qualify for, and whether they can afford to go without working for a sustained period; the housing needs that arise for patients who live far from UCLA; the patient’s ability to comply with ongoing medical treatment plans; and any family problems that might interfere with the recovery regimen. After the transplant, she continues to monitor their support, finances and emotional well-being, providing or directing them to assistance where needed. Ventura also runs support groups for patients and family members, giving them an opportunity to share their unique experiences with others who are in similar circumstances.

The experience of Ventura and her colleagues who staff the transplant programs is rarely matched in other health care settings. “It’s a lot of work, often for long hours, and it can be stressful because you’re dealing with someone who has end-stage organ failure that can often lead to death,” says Nanci Flores, administrative director of UCLA’s transplant programs. “The people who staff these programs are very dedicated, and they find it extremely rewarding. It becomes almost like a calling for them.”

Transplant recipients never forget the moment they are notified that a life-changing organ awaits.

“They was a big panic,” says Tricker, smiling at the memory. “It’s like when a woman is pregnant and you make all these plans and have everything packed and ready to go…then when the time comes, you forget half the stuff you were going to take with you.”

Alexander Falzon had waited four and a half years for “the call.” For three years, the retired U.S. Air Force colonel had been on peritoneal dialysis; after he nearly died of peritonitis in February 2003, he went on hemodialysis—five hours every other day connected by two needles to a machine.

A world traveler before his kidneys began to fail, Falzon hadn’t left his Santa Barbara community in six years. On December 5, 2003, just before midnight, a nurse from UCLA’s Kidney Transplant Program called to tell him a kidney had become available. Less than a year after the transplant, Falzon, 74, was making plans to visit his daughters, sister and grandchildren on the East Coast. “I’ve been reborn,” he says. “I’m making commitments in a way that I haven’t since I was 40.”

Sanford has been the bearer of news that changed lives like Falzon’s. As
manager of UCLA's Kidney Transplant Program, she is far less likely to be the caller than in the past. But every once in a while, when her staff is extremely busy, someone will ask her to “take call.”

“There’s just nothing else like it,” Sanford says. “Patients always act like you’re the one giving them the kidney. It’s very emotional.”

In the Heart and Lung Transplant Program, the uncertainty that goes with waiting for an organ is extremely stressful, says Ventura. “The call could come at any minute or it could be months,” she notes. “Your life is on hold, you’re becoming more disabled and dependent, there are often increasing financial stresses, and of course you’re worried about dying in the event you’re not transplanted in time.”

Unfortunately, for too many patients “the call” never comes, because the demand for organs continues to far exceed the supply.

UCLA has been a leader in efforts to close this gap. In kidney transplantation, the living donor program has grown significantly in recent years, expanding the pool; research by Terasaki and others has shown that receiving a kidney from a living donor confers advantages regardless of the level of compatibility.

In liver transplantation, the 5,000 donors each year can’t come close to meeting the needs of the population needing an organ. For starters, Busuttil notes, an estimated 4 million people in the United States have hepatitis C; conservatively, one in five of those patients—800,000 people—needs a new liver. To address this massive shortage, UCLA’s program has developed several new strategies, including the split-liver transplant, in which an adult cadaveric liver is divided into two functioning allografts; the living donor transplant (under highly selective criteria, approximately 20 healthy donors per year give part of their liver, with an extremely high recipient success rate); and extended-criteria cadaveric donations, in which the donors are less than ideal but, through various pharmacological manipulations, quicker operating times and improved patient selection, success can be achieved.

Out of a cramped UCLA office 40 years ago, an unassuming young scientist developed tissue typing techniques that would significantly advance the burgeoning field of organ transplantation. The findings established Dr. Paul Terasaki as a pioneer in one of medicine’s most remarkable 20th century advances and thrust UCLA into a leadership role that it maintains to this day.

Terasaki joined the UCLA School of Medicine faculty in 1956 and first gained international recognition eight years later when the UCLA Tissue Typing Laboratory under his leadership developed the microcytotoxicity test, which created the field of histocompatibility as it continues to be known. His technique of genetically matching donors and recipients for organ transplantation, first applied to kidneys beginning in 1964, also led to a new way to resolve disputed paternity cases and established links between human leukocyte antigen (HLA) and a variety of diseases.

In transplantation, the technique to genetically match donors and recipients—its efficacy confirmed through additional research in Terasaki’s lab demonstrating the association between the level of HLA antigen matches and graft survival—spread throughout the world. “This was a test that was relatively easy and could be standardized,” says Dr. Elaine Reed, who has inherited Terasaki’s legacy as director of UCLA’s Immunogenetics Center. “It enabled everyone to speak the same language.”

In addition to developing the microcytotoxicity test, Terasaki recognized that patients who had pre-formed antibodies against donor HLA antigens would reject the graft. All patients waiting for a kidney transplant are now screened for the presence of these antibodies.

Terasaki’s research showing better kidney graft survival rates for recipients of HLA-matched cadaveric donor kidneys changed public policy in how organs are allocated throughout the United States. The United Network for Organ Sharing now facilitates the shipment of approximately 100 kidneys per month between U.S. transplant centers for transplantation to HLA-matched recipients.

The Tissue Typing Lab also established a Kidney Transplant Registry, an international database that includes results from all kidney transplants and is used for ongoing evaluation. Among other things, the database facilitated the finding that living, unrelated donor grafts could achieve better results than cadaver grafts, even with modern immune suppression. Now, results from transplants of all organs are maintained in national registries.

The impact of these advances on UCLA’s transplant programs can be seen in many ways. Terasaki has retired, but the program he founded, now called the UCLA Immunogenetics Center and under the direction of Reed, continues to be a recognized leader in moving the field of HLA immunogenetics forward. Meanwhile, Terasaki and other early UCLA pioneers—including Dr. Willard Goodwin, then-chief of urology, who was one of the first to use immunosuppressive agents in transplant recipients—gave UCLA an international presence in the transplant field that attracted other leaders and contributed to the institution’s position as the world’s leading solid organ transplant program.**
The split-liver procedure has been an especially important advance for children—particularly those in their first year of life, who, nationally, are at the highest risk of dying while waiting for an organ. “We have needed to become a lot more technically creative in terms of finding appropriate deceased donor organs for these children,” says Dr. Suzanne McDiarmid, surgeon and medical director of UCLA’s Pediatric Liver Transplant Program. With the split-liver technique, healthy cadaveric adult livers that would be too large for pediatric recipients—the majority of whom are under 2—are divided into two transplantable segments, with outcomes that are similar to those of whole-graft transplants; as a result, McDiarmid says, far fewer children on the UCLA waiting list are dying before an organ becomes available.

In heart transplantation, UCLA has played a leading role in the use of assist devices—so-called bridge therapies to keep patients alive until a heart becomes available. Recently, mechanical hearts have been developed that are appropriate deceased donor organs for these children,” says Dr. Suzanne McDiarmid, surgeon and medical director of UCLA’s Pediatric Liver Transplant Program. With the split-liver technique, healthy cadaveric adult livers that would be too large for pediatric recipients—the majority of whom are under 2—are divided into two transplantable segments, with outcomes that are similar to those of whole-graft transplants; as a result, McDiarmid says, far fewer children on the UCLA waiting list are dying before an organ becomes available.

In heart transplantation, UCLA has played a leading role in the use of assist devices—so-called bridge therapies to keep patients alive until a heart becomes available. Recently, mechanical hearts have been developed that are appropriate deceased donor organs for these children,” says Dr. Suzanne McDiarmid, surgeon and medical director of UCLA’s Pediatric Liver Transplant Program. With the split-liver technique, healthy cadaveric adult livers that would be too large for pediatric recipients—the majority of whom are under 2—are divided into two transplantable segments, with outcomes that are similar to those of whole-graft transplants; as a result, McDiarmid says, far fewer children on the UCLA waiting list are dying before an organ becomes available.

In heart transplantation, UCLA has played a leading role in the use of assist devices—so-called bridge therapies to keep patients alive until a heart becomes available. Recently, mechanical hearts have been developed that are appropriate deceased donor organs for these children,” says Dr. Suzanne McDiarmid, surgeon and medical director of UCLA’s Pediatric Liver Transplant Program. With the split-liver technique, healthy cadaveric adult livers that would be too large for pediatric recipients—the majority of whom are under 2—are divided into two transplantable segments, with outcomes that are similar to those of whole-graft transplants; as a result, McDiarmid says, far fewer children on the UCLA waiting list are dying before an organ becomes available.

Advances in the surgical technique of lung transplantation, also pioneered at UCLA, have improved results as well as expanded the number of lungs available for transplant. Modified reperfusion, developed at UCLA by Dr. Abbas Ardehali and colleagues, combines the patient’s blood with added elements that ultimately help to resuscitate the new lungs. The process, which has been adopted by several other centers, replenishes the new lung with nutrients and removes any white blood cells that might injure the lung and cause organ failure. Ardehali, associate professor of cardiac surgery and director of the UCLA Lung Transplant Program, notes that the incidence of severe organ failure following transplantation is less than 5 percent at UCLA—significantly lower than the 10–15 percent failure rate nationally. “In the future, we’re going to see more liberal use of donor organs,” Ardehali says. “Transplant centers are becoming more comfortable with using organs that may not be perfect, given the donor shortage we face.”

Ardehali and his colleagues in all of UCLA’s transplant programs are also continuing to focus on advancing methods of immunosuppression. “We’re still using non-specific, generalized immunosuppressive medications,” he says. “With better understanding resulting from our research, we should be able to develop tools to create donor-specific tolerance, which will revolutionize the field of solid organ transplantation: It would minimize the risk of infections as the host immune system remains intact, yet control the damage to the transplanted organ and therefore might lead to increased longevity of the donor organ.”

Many people Busuttil encounters are surprised to learn about the success rates of transplantation. “The first thing a lot
of people ask me is, ‘Can you survive a liver transplant?’” he says. “They don’t realize that in fact, liver transplantation is probably the most important advance in the treatment of patients with end-stage liver disease in the history of medicine. It’s remarkable what it’s done—going from a death sentence to a relatively normal life for the 90 percent of patients who are surviving one year.”

Busuttil is himself taken aback whenever he attends a reunion party for living donors and their recipients. “What always amazes me, even after doing more than 3,000 of these, is that I can’t recognize the patients,” he says. “When we transplant them, they look so sick, and then you come back a year later and they have been completely transformed.”

The one-year patient survival in UCLA’s pediatric liver transplant program has also risen to approximately 90 percent. “These are children who are going from a 100 percent chance of death to a 90 percent chance of being alive and well with their new organ,” McDiarmid says. “And even though there are a lot of complications that can occur, if you get past the first three months, the chances are good that you will have a very high-functioning child—engaged in school and leading a normal life.”

Now that she has been performing liver transplants for 20 years, McDiarmid increasingly receives letters from former patients who are graduating from high school or college, getting married, and, in some cases, having children of their own.

Ventura notes that these and other healthy transplant recipients tend to develop a unique appreciation for life. “They always describe having a much better insight and understanding of what life has to offer,” she says. “Transplant recipients are proof of the extraordinary strength and resilience that is within all of us.”

Grant Searcey is one transplant recipient who views life from a new perspective. He was 18 and near completion of high school in his native Nebraska in 1994 when, in the middle of a pickup basketball game, he began to have trouble breathing. In the emergency room, he was found to have a resting heart rate of 130.

He was diagnosed with severe idiopathic cardiomyopathy, and received an internal defibrillator. The device and medications enabled Searcey to live a somewhat normal life through most of his 20s, though the former competitive swimmer was forbidden from any exercise more strenuous than his daily walking.

By mid-2004, it became clear that to be “the best heart transplant hospital in the world.” As he lay in his UCLA hospital bed on the transplant waiting list, the 28-year-old multimedia artist drew a detailed picture of a healthy heart; underneath it, he wrote, “I look forward to meeting you.” The next day, he was told a match had been found. Now back home, with a new heart and new hope, Searcey says he feels great for the first time in his adult life. “I was reborn—physically, mentally and spiritually,” he asserts. “I have a new body that works, and I see the world completely differently. Things that used to worry or bother me are no longer a big deal. And I just enjoy every moment.”
New Chair of Surgery Driven to Excellence

RELYING ON INTUITION BORN OF EXPERIENCE, Ronald W. Busuttil tears around hairpin turns in the Italian Alps, hitting speed in the straights, adjusting for every twist and bump in the road, reacting to each note of his car’s roaring engine, smelling the familiar combination of exhaust and tires, gauging when to shift gears as he senses the load on the eight cylinders of his powerful blue sports car, which feels like an extension of his mind and body. He adapts so well to high speed that everything around him seems to be moving slowly.

Busuttil is at one with the race as each meter of each kilometer passes under his 1952 Siat a 400L during the 1,000-mile Mille Miglia, perhaps the world’s premier race for vintage high-performance automobiles (1927 to 1957).

Being at one with his environment and functioning masterfully at high speed are key to this many-faceted, 58-year-old physician’s multitude of successes, including his remarkable achievements at UCLA.

At the beginning of 2004, Busuttil became chair of surgery at the David Geffen School of Medicine at UCLA. Add to that title these roles: one of the world’s premier liver transplant surgeons, a dedicated family man, cyclist, tennis player and jogger, plus enthusiastic traveler, avid reader, caring friend, keen observer and you have a pretty fair picture of Busuttil.

He’s running a surgery department acknowledged to be one of the best in the nation. And he’s determined to make it even better.

When Busuttil talks about his goal for the Department of Surgery he is, as usual, passionate and concise:

“My primary goal is to excel in our academic mission,” he says. “To do that we need to accomplish four ends.”

He quickly ticks them off:

❖ Pursue and accomplish the best and most innovative medical treatment anywhere
❖ Renew a spirit of teaching and mentorship in our young faculty, residents and students
❖ Increase research creativity
❖ Raise $50 million for departmental endowment

Typically, Busuttil is moving at warp speed to accomplish his goals. He’s appointed seven high-powered committees, one of which he heads (the one charged with raising $50 million—he’s already got $5 million) while he works closely with the others.

In an academic environment where administrators often are known for moving slowly, Busuttil is an anomaly.

“His nickname as a resident was ‘The Flash,’” says Dr. Jonathan Hiatt, a surgeon who met Busuttil 27 years ago and has worked closely with him for most of the time since then. “He gets things done quickly because he’s economical, efficient and focused. I call his style ‘purposeful aggressiveness.’ People draft off his excellence. He’s the guy you’d follow into a fire.”

A professor of surgery in liver and pancreatic transplantation, Hiatt says Busuttil has made the liver transplant program at UCLA “one of the best in the world.”

“He built the program against the odds,” Hiatt says. “He’s like a guy who built a go-cart in his garage and flew it to the moon. It’s arguably one of the most successful liver transplant programs in the world, and he built it single-handedly with his own skill and determination.”

The first liver transplant was performed at UCLA in 1984. Each year, UCLA surgeons perform about 200 liver transplants, placing the program first in the nation for the last 10 years.

Since 1984, Busuttil has performed about 3,000 liver transplants himself. Under his leadership, UCLA’s program innovated the in-situ split-liver procedure, in which a single donor organ can be divided and transplanted into two patients, expanding the available organs for transplant. UCLA, in fact, is the national leader in that procedure.

UCLA also has developed techniques for treating patients with complex anatomy during transplant, Busuttil says, and was the first institution to establish the most effective protocol for anti-viral prophylaxis for cytomegalovirus (CMV) in liver transplant patients.

Dr. Thomas Starzl of the University of Pittsburgh Medical Center, known as the modern-day father of trans-
plantation, trained Busuttil. Starzl had high praise for his former student—as a surgical resident learning transplantation, as a mentor and leader at UCLA now, and as a standout among his peers internationally.

“I would score Ron Busuttil with a 10 on a scale of 10 in all areas,” Starzl says.

Busuttil may be going Mach 2 most of the time, but liver transplant recipient Donald Wolf says that one place he doesn’t hurry is with his patients.

“I knew he was considered one of, if not the best, liver transplant surgeon in the world, but I never expected him to be so compassionate and down to earth,” says Wolf, a 72-year-old West Los Angeles resident and partner of B & D Management Co. who received a liver transplant under Busuttil’s care in April of 2000. "He always made me feel good. He was never in a hurry or in a rush when he saw me. We felt we could ask all the questions we wanted to and he let me know I could call him anytime.”

Wolf needed a liver transplant because the hepatitis he contracted after receiving tainted blood during surgery in 1969 later caused liver cancer. He characterized Busuttil as “everything you’d want your doctor to be.”

“I feel like our family made a great friend,” Wolf says. "He was terrific to my wife and children. If you mention the name of Busuttil around them, they’ll bow down, I can tell you that.”

Liver transplant recipient Jackie Colleran didn’t meet Busuttil until after she awoke from a coma nine days after her 1996 surgery. Her first memory of him was when he came to check on her soon after she regained consciousness.

“When I saw him for the first time he was being followed by a flock of white jackets. I knew he must be the boss, because none of the people in the white jackets were looking at me. They were all looking at him,” says Colleran, a 64-year-old Thousand Oaks resident. “He asked them for suggestions as to why I was not thriving and he was getting all sorts of complicated responses. He finally turned and looked at me, winked, and told the white jackets that all I needed was a blood transfusion. He said to me, ‘You’re just a couple of quarts low,’ and he grinned at me and left.”

And, of course, he was right. Colleran received a transfusion and felt better almost immediately.

Colleran describes Busuttil as amazing, and says he remembers all his patients and greets them by name when he passes them in the hospital hallways, no matter how long ago their transplants were.

“He’s very warm with his patients,” she says. “The feeling that you get from him is that he is still very much enjoying his job and loving the work that he does. That does a lot to help motivate his patients. They want to be well for him.”

At work and at home, Busuttil is a happy man. He loves what he does, does it extraordinarily well, and is devoted to his family.

“When he comes home he’s almost always whistling,” says his wife of 36 years, JoAnn.

They live in a spacious Westwood home cared for by JoAnn.

“There’s a division of labor,” she says. “I don’t ask him to make decisions about the home or children, he doesn’t ask me to make decisions about his work.”

The “children” are Amber, a corporate tax lawyer, and Ashley, a second-year medical resident at UCLA.

“He idolizes his daughters,” JoAnn says. “He’s devoted to his family.”

When he’s not working, Busuttil goes on bike rides with friends and family or relaxes by the pool reading the New York Times and the Los Angeles Times. He plays tennis on their home court or takes a long jog. He also loves to barbecue, JoAnn says.

“He’s the king of the barbecue,” she says.

Busuttil has come a very long way.

His first American home was a dirt-floored hut on the edge of a Florida orange grove. He hadn’t always lived like that.

“My Italian mother and Maltese father came from cotton merchant families living an upper-class life in Alexandria, Egypt, until the political turmoil of 1950, when basically all Europeans were asked to leave the country,” Busuttil says.

An only child, Busuttil and his parents arrived in America with a few hundred
dollars and their clothes. They barely spoke English.

So they all went to school. Busuttil's father soon got a job washing cars for a Hertz car rental agency. Within a decade, he was Hertz' area manager. And 16 years after coming to America, he owned a Toyota agency.

Meanwhile, Busuttil was busy getting top grades in school. He knew where he was going. In the eighth grade he wrote an essay titled, "I Want to be a Surgeon." In high school, he got top grades, made the basketball and track teams, and still wanted to be a surgeon.

On a partial scholarship at Loyola University in New Orleans, he studied under John Mullahy, chair of the Biological Sciences Department and a teacher who had a profound effect on Busuttil. Mullahy put great emphasis on undergraduate research, and that emphasis was made to order for Busuttil.

"I worked on inflammation produced by lysosomes," Busuttil recalls. "My research sought to find a way to stabilize the lysosomes membranes so they don't accelerate inflammation in the body. And you know what? I'm still working on similar projects, though much expanded and more sophisticated, and related to transplanted organs."

Later he attended Tulane Medical School, again on scholarship, and graduated in 1971 with a medical degree and a master's degree in pharmacology.

Busuttil first came to UCLA as an intern in 1971, then returned to Tulane to earn a doctorate degree in pharmacology. During his two stints at Tulane, Busuttil worked with Dr. Elmo Cerise, a surgeon who ran a program that brought medical students into the operating room to work with him, an experience Busuttil describes as "a phenomenal opportunity to really taste what surgery was all about."

"It told me that surgery was what I wanted to do for the rest of my life," Busuttil says.

In 1975, Busuttil returned to UCLA to finish his surgical residency, which he completed in 1978. Dr. Thomas Calcaterra, a UCLA head and neck surgeon for 34 years and a professor emeritus of surgery, remembers Busuttil from his first years at UCLA and watched him develop into an excellent surgeon with a bedside manner that—literally—wows his patients.

"He's extremely bright and articulate with a vast knowledge of medicine," says Calcaterra, who retired in July. "He almost has the answer before you can even finish the question. His mind works at cosmic speed. He's technically gifted, right off the charts, and he's always able to remain cool and composed in the direst life and death circumstances."

Throughout the years, Calcaterra and Busuttil treated a number of patients together, and Calcaterra says the patients always "came away awed."

"He inspires great confidence," Calcaterra says. "He's decisive, and he helps patients make the right treatment decisions."

Calcaterra has no doubt that Busuttil will succeed in making the UCLA Department of Surgery the best in the nation.

“He is an inspired leader,” Calcaterra says. “He’s universally looked up to as a surgeon and he really wants to make the department No. 1 in the country. I think he can do it. He knows what has to be done. These are tough times in medicine, with lean budgets, but I think he’s got the path defined pretty well.”

Busuttil describes leading the surgery department as “the ultimate challenge,” and the “capstone of one’s career.”

But he’s not leaving the operating room anytime soon.

“I love going in the OR,” Busuttil says. “I get enormous gratification from saving somebody’s life. When I took this job, it was on the condition that I could continue being a surgeon. That’s the one thing I know I do really well.”

TRIBUTE TO THE AUTHOR

John Dreyfuss, the author of the accompanying profile on Dr. Ronald Busuttil, passed away after an acute illness at age 70 on August 21, 2004, before he was able to complete the article. A former colleague at UCLA’s Jonsson Cancer Center, Kim Irwin, completed the assignment, adding to John’s almost completed story, primarily using the transcribed notes John had taken from interviews with sources. The consummate professional, John called the editor often—including from his hospital bed when he was extremely ill—to give an update on his story, to ask for more “words” so he could make the story longer, and to share his enthusiasm and admiration for what he had learned about Dr. Busuttil. We are honored to print his final story.

John was a warm, gregarious man with a charming wit, who served as a mentor for many young writers. Not surprisingly, John—who personified the term “people-person”—relished the opportunity to write profiles about UCLA personalities, and he did so with the same zest he lived his own life. In his retirement years, John and his wife, Kit, had taken many bike trips on their tandem bike, traveling through Colorado and Australia, among their many adventures.

John served as public information director and then director of planning and communications at UCLA’s Jonsson Cancer Center from 1995-2000. Prior to that, he had a 27-year career with the Los Angeles Times, where he at various times worked as a higher education reporter, the architecture and design critic, and a features writer.

John is survived by his wife, Katharine (“Kit”), son James, and three daughters, Karen, Katharine and Kimberly, and five grandchildren. A memorial to honor his life was held at UCLA on November 14, 2004.
After years of struggle against one of the leading causes of blindness, UCLA researchers are at the dawn of a new era in the treatment and prevention of macular degeneration.

In the journey from theory to therapy—research, clinical trials, epidemiological studies—researchers at the David Geffen School of Medicine at UCLA and UCLA’s Jules Stein Eye Institute have played key roles in advancing the field of knowledge about the disease.

And now, they are watching as that knowledge translates into new treatments and even prevention strategies against a multi-faceted disease that inevitably leads to a patient slowly losing his or her eyesight.

“We are entering an incredibly exciting time in our field: the pharmacotherapy era for macular degeneration,” says Dr. Steven D. Schwartz, Chief of the Retina Division at UCLA’s Jules Stein Eye Institute.

“At the Institute, we have led translational research from the laboratory bench to the bedside, and that research is about to make available drugs that successfully treat all forms of ‘wet’ macular degeneration. It is an immensely satisfying time for us; we’re on the verge of making an enormous impact in the fight to preserve vision,” Schwartz says.

Macular degeneration is a disease that damages or destroys the center of the retina, the portion of the eye known as the macula. Macular degeneration destroys a person’s vision through the center of the retina, leaving only peripheral vision unaffected; a person can walk across a room, yet be unable to read a book or drive.

Smoking, diet, and genetic factors all play a role in the onset and development of the disease. While some forms attack the young, macular degeneration hits the elderly the hardest; 30 percent of people over 75 have some form of age-related macular degeneration. Among those 65 and older, between 15 percent and 20 percent has some form of the disease, and it is the leading cause of blindness in those 55 and older.

“If this were caused by a pathogen, you’d consider this a raging epidemic,” says Dr. Dean Bok, a professor of neurobiology and Dolly Green professor of ophthalmology at UCLA’s Jules Stein Eye Institute. “Our baby boomers are going to be burdened with a massive economic responsibility if we don’t come up with effective treatments.”

Age-related macular degeneration is typically found in two forms. Wet (neovascular) macular degeneration is a malfunction of the blood vessels under the retina; the dry (atrophic) version is an atrophy or degeneration of the tissues themselves. The wet form, by some accounts, is responsible for 90 percent of all cases of blindness in macular degeneration patients. Current treatment options have significant drawbacks. One treatment, an injected drug called Visudyne® (verteporfin) that is activated by a laser, attempts to cauterize the leaking blood vessels without collateral damage. But it can damage the retina’s blood supply or the retina itself, resulting in permanent loss of vision.

The dry form has proven particularly vexing to researchers—to date, there is no effective treatment known. Dry macular degeneration progresses at a slower rate than the wet form, and typically progresses over a decade.

Victims of macular degeneration, like other forms of blindness, pay a heavy toll in their quality of life; simple, daily activities become difficult, if not impossible.

Alice Remer, 97, a Santa Monica resident, has led a life worthy of a novel—a childhood in Austria, a harrowing escape by her family from the Nazi occupation of that country. Remer’s life has actually been the subject of two novels, both penned by her. When she was first diagnosed with macular degeneration, she was still writing, taking classes, hoping for the best when it came to her eyesight.

“In the beginning, I could read if I had a good light. When I attended a class to prepare the autobiography, I would bring a very strong light from home. Gradually, I could not read or use a computer,” she says.

“Now, it’s very foggy, everything. Any light is blinding, and it’s still getting worse. I cannot watch television, go to a movie, do anything that people do. I try to dictate my stories now, but it’s not the same. I cannot describe things in the same way. It becomes more of a report than a story from the heart, you know? It is too much for me. It makes you dependent. It takes everything.”

At its core, this is what UCLA researchers have been striving for—successful, effective treatments that improve the quality of life for these people.

Dr. Anne L. Coleman, professor of ophthalmology at UCLA, and Dr. Carol M. Mangione, professor of medicine at UCLA, are studying macular degeneration in approximately 5,000 older women. “We’ve found a high rate of macular degeneration in these older women. We started this research in 1997 to determine the impact of macular degeneration on falling and hip fractures, but along the way we’ve collected information about diet and quality of life, among
other lifestyle factors,” Coleman says. Their research now encompasses quality-of-life issues, incidence of macular degeneration, impact of nutrition on the disease, candidate genes for macular degeneration, and falls and fractures secondary to macular degeneration.

The complex causes of age-related macular degeneration have been the focus of Bok’s research. For example, while age-related macular degeneration has a genetic component, it involves more than one gene and sometimes results from a combination of mutations that interact to form the disease.

In addition to the genetics, environmental triggers can cause the disease to progress and worsen. Many studies have demonstrated that the incidence of macular degeneration is five times higher among smokers than among non-smokers. And the rate of visual loss is four to eight times higher among tobacco users.

Genetic treatments have shown promise in the treatment of some genetic causes of blindness. Experiments on animals have proven to be high-profile successes. For example, two dogs—Lancelot and Guinevere—who were born blind were treated with a modified adeno-associated virus designed to promote the production of 11-cis retinaldehyde, a derivative of vitamin A that the dogs were missing, causing their blindness. As Bok says, “They took the guts out of this virus and put in a gene that is absolutely essential for the production of 11-cis retinaldehyde. You create a virus with cargo capacity, and you put in a gene that is therapeutic.” Lancelot and Guinevere are now no longer blind and have appeared on Capitol Hill to demonstrate the potential for genetic therapies. Indeed, the 11-cis retinaldehyde protein turned out to be intricately linked to one key form of macular degeneration.

Future treatments, Bok

“We are entering an incredibly exciting time in our field: the pharmacotherapy era for macular degeneration. We’re on the verge of making an enormous impact in the fight to preserve vision.”

—Dr. Steven D. Schwartz, chief of the Retina Division at UCLA’s Jules Stein Eye Institute
says, may involve genetic therapy that introduces into the eye the cytokine or CNTF molecule, via an engineered virus (“a Trojan Horse,” Bok says). Or treatments could involve an engineered cell that manufactures the CNTF molecule that is implanted into the eye and “drips” the medicine into the damaged eye.

Pushing the Frontiers of Genetic Therapies is the goal of Dr. Anurag Gupta, ULCA assistant professor of ophthalmology and a researcher at the Institute. Gupta is principal investigator of a study that uses manipulated genetic material injected into the eye via a non-active virus to provoke the retina to generate pigment epithelial-derived growth factor (PEDF), known to combat the growth of the blood vessels that cause wet macular degeneration.

“**We’re turning away from physically destructive treatments to biological treatments that address the root cause of the condition.**”

Dr. Christine Gonzales, UCLA assistant professor of ophthalmology

“**We just finished phase I trials, and we’re excited because we’ve found that it is remarkably safe as an injection. We’re formulating phase II trials now,”** Gupta says.

“**Medicines are moving toward genetic-based treatments. It may be a better approach to rebalance naturally occurring cytokines in the attempt to block new blood vessel growth,”** Gupta says.

Molecular treatments under investigation include attacking the wet form of age-related macular degeneration with biological rather than destructive approaches. In the wet form of the disease, new blood vessels begin to grow—rapidly—beneath the macula and frequently leak, destroying the retina’s ability to convert light into a neural signal. The growth in the blood vessels is due to a molecule known as VEGF (vascular endothelial growth factor); one treatment approach is to introduce an aptamer (a synthetic oligonucleotide) that binds to the VEGF molecule, preventing it from damaging the eye.

Gupta is principal investigator of a clinical trial using anecortave acetate, a modified steroid, to prevent dry macular degeneration from turning into the wet form—particularly in patients who have wet macular degeneration in one eye and the dry form in the other. The disease can attack each eye in different forms, and can progress at different rates.

Three macular degeneration studies at the Institute, investigating treatments designed to halt the progression of—or reverse—the wet form of the disease are being conducted by Dr. Christine Gonzales, UCLA assistant professor of ophthalmology. Her trials have involved an anti-VEGF agent known as Macugen® (pegaptanib sodium injection), which is injected into the diseased eye every six weeks. She conducted phase I/II safety trials and subsequently led recruitment in the pivotal phase III trials, which were designed to determine if the treatment could slow the rate of visual loss from the wet form of macular degeneration.

It did. Researchers found that among the patients given a placebo, 45 percent had lost three lines of vision—a measurement of their ability to see—over the period of a year. Among the patients given Macugen, only 30 percent had lost the same amount of vision.

Equally as impressive was the safety and efficiency rates demonstrated in the trial. Among the 1,200 patients in the study, more than 7,500 injections were delivered with “very few serious ocular or systemic side effects,” Gonzales says. The lowest of the three doses tested worked equally as well as the highest dose. And the treatment worked on all three subtypes of wet macular degeneration.

“These results show that Macugen will fill an enormous unmet medical need, because prior to this study, we had no proven treatment for more than 75 percent of the population with wet macular degeneration. It (Macugen) is a phenomenal new treatment for patients who have no options,” Gonzales says.

Her other two trials are, in essence, extensions of the first; one aims to determine how long the medication remains in circulation; the other is designed to determine whether or
not the injections have an impact on macular thickness.

Gonzales says the Food and Drug Administration put the treatment on fast track for approval, and it has been approved for usage beginning February 2005.

“It’s going to have a huge impact on the way we manage macular degeneration,” Gonzales says. “We’re turning away from physically destructive treatments to biological treatments that address the root cause of the condition. In a substantial number of patients, we will see an improvement in their eyesight.”

Dr. Gabriel Travis, professor of ophthalmology and professor of biological chemistry at UCLA, has been researching the causes of one of the most heartbreaking manifestations of macular degeneration—Stargardt’s disease, which attacks the vision of the young. “As Stargardt’s develops, only peripheral vision remains. You can imagine how terrible it is. We wanted to understand what this disease was doing and come up with a solution,” Travis says.

“The light-sensitive chromophore in our retinas can be likened to a mouse trap,” Travis explains. “Absorption of a photon ‘trips’ the mouse trap. Before light sensitivity can be restored, the chromophore must be re-made by an enzyme pathway called the visual cycle. The gene affected in Stargardt’s disease, ABCA4, encodes a component enzyme in this pathway.”

To study the function of this enzyme, Travis generated mice with a “knockout” mutation in the ABCA4 gene, similar to the defect in humans with Stargardt’s. “We discovered that when the ABCA4 gene is ‘broken’ in the knockout mice, mimicking the Stargardt’s condition, levels of all-trans-retinaldehyde increase. This leads to the build-up of toxic pigments called lipofuscin. If lipofuscin accumulates unchecked, it ultimately kills the rods and cones, causing blindness,” Travis explains. “We wondered if there was some way to ‘detune’ the visual cycle, to reduce the levels of all-trans-retinaldehyde, and thus inhibit accumulation of lipofuscin.”

The basis for this therapeutic strategy is rooted in our evolutionary past, when the ability to see in dim light could make the difference between escaping from a predator or not. Rods evolved, permitting humans and other animals to see by starlight. Yet with the advent of artificial lighting, rods have become less useful to modern man, who spends most of the time under light conditions in which rod response is saturated and vision is mediated entirely by cones. “Although our rods contribute nothing to useful vision in bright light, they still churn through chromophore. The visual cycle must work overtime due to our prolonged exposure to light, which contributes to the formation of lipofuscin pigments, especially in patients with Stargardt’s defect. Inhibiting the visual cycle pharmacologically potentially could alleviate the biochemical defect in Stargardt’s patients,” Travis explains.

People with severe acne are often treated with a drug that has a side effect of reduced vision in dim light due to the inhibition of the visual cycle. “We decided to exploit this side effect by treating Stargardt’s mice with the drug,” explains Travis. “It worked better than we expected in the mice; it completely blocked formation of toxic lipofuscin pigments, and also blocked formation of the toxic lipofuscin degradation products. This treatment strategy amounts to a trade-off in visual function; by giving up the ability to see well in dim light, Stargardt’s patients may delay the onset of blindness due to their disease.”

This particular drug has other undesirable effects that render it unsuitable for long-term treatment, but Travis and colleagues are working to identify safer drugs to slow the visual cycle and thus prevent accumulation of toxic pigments.

Whatever the approach to curing the disease, UCLA’s Jules Stein Eye Institute remains at the center of the search. “We’ve been involved in most major multi-center clinical trials investigating new treatments for macular degeneration,” Gonzales says. “Dr. Schwartz has done a wonderful job in bringing these to the Institute so that we can participate in cutting-edge research during what is, really, a very exciting time in which we are making important breakthroughs in the treatment of this disease.”
UCLA Hospital System Appoints New Senior Managers

UCLA Hospital System recently appointed three new associate vice chancellors to its senior management team.

David L. Callender, M.D., M.B.A., was chosen as associate vice chancellor, UCLA Hospital System, and director, UCLA Medical Center. He previously served as executive vice president and chief operating officer at the University of Texas MD Anderson Cancer Center.

Tom Sibert, M.D., M.B.A., was selected as associate vice chancellor for the UCLA Faculty Practice Group. He previously served as executive vice president of clinical services for University of North Carolina (UNC) Health Care and medical director and chief operating officer for UNC Physicians & Associates.

Mitchell Creem, M.H.A., was appointed as associate vice chancellor and chief financial officer for UCLA Medical Sciences. He previously served as chief financial officer at Beth Israel Deaconess Medical Center, a Harvard teaching-hospital affiliate.

“I am delighted that we were able to successfully recruit three outstanding individuals to lead these critical areas of our academic research, education, and patient care,” says Dr. Gerald S. Levey, vice chancellor, UCLA Medical Sciences, and dean of the David Geffen School of Medicine at UCLA. “It’s due to the hard work of our exemplary staff and their dedication to providing the highest quality care for our patients.”

Mattel Children’s Hospital at UCLA Opens New Center for Children with Genetic Diseases

Mattel Children’s Hospital at UCLA opened a new center June 28, 2004, to help children with life-threatening genetic diseases. The Jeffrey Modell Diagnostic Center for Primary Immunodeficiencies (PI) will diagnose and treat pediatric patients with PI, an umbrella term for more than 100 genetic defects that compromise the immune system. Often misdiagnosed as common childhood illnesses, PI affects an estimated one in 500 Americans.

The center is sponsored by ZLB Behring and the Jeffrey Modell Foundation, which was founded in memory of Jeffrey Modell by his parents Fred and Vicki after he died from PI. Dr. Talal Chatila, division chief of pediatrics, immunology, allergy and rheumatology, directs the center.

UCLA Designated Center of Excellence by Huntington’s Disease Society of America

The Department of Neurology at the David Geffen School of Medicine at UCLA has been designated a regional Center of Excellence by the Huntington’s Disease Society of America (HDSA). UCLA was one of four universities across the nation competitively awarded the prestigious designation this year.

The designation includes $50,000 a year in funding to help support a multidisciplinary team of health care professionals with expertise in Huntington’s disease. The group provides comprehensive medical and social services, as well as education, outreach and research opportunities to the Huntington’s disease community.

Usually striking in mid-life, Huntington’s disease is an inherited degenerative disorder that robs patients of the ability to think, control their emotions and perform coordinated tasks. Each child of an affected parent has a 50 percent risk for inheriting the disease. No effective treatment or cure exists for the fatal illness, which affects 30,000 Americans and places another 200,000 at risk.

Dr. Susan Perlman, clinical professor of neurology, directs the Huntington’s Disease Clinic, a clinical trials site, and a full spectrum of services for individuals and families affected by the disorder. For more information, see www.huntington-study-group.org/.

UCLA Medical Center Awarded Top Accreditation for Patient Care

UCLA Medical Center earned a Gold Seal of Approval from the Joint Commission on Accreditation of Healthcare Organization (JCAHO) for demonstrating compliance with its national standards for health care quality and safety.

Following a five-day onsite visit in May 2004, JCAHO concluded that UCLA met all criteria for providing quality health care and made no recommendations for improvement. Only 17 percent of hospitals received accreditation at this top level in 2003.

“We’re proud to have received this accreditation from such a demanding organization,” says Dr. Gerald S. Levey, vice chancellor, UCLA Medical Sciences, and dean of the David Geffen School of Medicine at UCLA. “It’s due to the hard work of our exemplary staff and their dedication to providing the highest quality care for our patients.”

UCLA Medical Center ranks as the best hospital in the western United States for the 15th consecutive year, according to the July 12, 2004, issue of U.S. News & World Report, which published its annual survey of 2,550 board-certified physicians from across the nation.

UCLA ranked in the top 20 in every specialty area, including a No. 1 ranking in geriatrics for the 13th consecutive year and a No. 4 ranking for urology.

The UCLA Neuropsychiatric Hospital ranked No. 5 in the country for psychiatry and best in the west for the 13th consecutive year. UCLA’s Jonsson Comprehensive Cancer Center and Jules Stein Eye Institute also ranked best in the west, with national rankings of No. 8 and No. 5 respectively.

UCLA Medical Center is the only Southern California hospital to earn a spot on the magazine’s “honor roll” rankings during the 15 years the publication has conducted the survey. The honor roll recognizes hospitals that demonstrate excellence across many specialties.

UCLA Medical Center is the only Southern California hospital to earn a spot on the magazine’s “honor roll” rankings during the 15 years the publication has conducted the survey. The honor roll recognizes hospitals that demonstrate excellence across many specialties.
Neufeld Steps Down as Department Chair with Big Plans for Her Future

By Elaine Schmidt

Twenty years of leadership as chair of UCLA’s Department of Biological Chemistry would appear a crowning achievement to most careers—particularly when it caps off a 21-year tenure at the National Institutes of Health. But Elizabeth Neufeld, Ph.D., has no intention of resting on her laurels.

“I plan to devote the next several years to my research,” says Neufeld, 76. “I haven’t had the chance to proceed as fast as I’d like, and I have definite goals for the future.”

The children’s faces pictured in her office reflect the urgency behind Neufeld’s drive. Posters, news clippings and plaques describe the young lives made possible by her research on a group of inherited diseases called mucopolysaccharidoses (MPS), which include Hurler and Sanfilippo syndromes.

MPS affects lysosomes, the cell’s “recycling plants” that use enzymes to break down leftover molecules for reuse. If a lysosome has a missing or defective enzyme, the undigested material accumulates, leading to misshapen cells and enlarged organs. The progressive MPS disorders often lead to neurological deterioration, abnormality of the bone structure, mental retardation and childhood death.

Neufeld’s research at NIH identified the enzyme deficiencies that cause MPS. Her findings led to tests that enabled physicians to accurately diagnose the syndromes and counsel families, and paved the way for enzyme replacement therapy.

Leonard Rome, Ph.D., senior associate dean for research at the David Geffen School of Medicine at UCLA, vividly recalls his formative years as a postdoctoral researcher in Neufeld’s lab at NIH in the late 1970s.

“We worked elbow-to-elbow with Liz in a crowded lab,” describes Rome. “The atmosphere was so charged and stimulating that we never wanted to leave for fear we might miss the next big finding. We were driven by Liz’s brilliant insights and instincts for helping us interpret often puzzling results. It was a very exciting time.”

The findings from Neufeld’s laboratory also laid the foundation for enzyme-replacement therapies, a breakthrough that has allowed many MPS children to live longer, more normal lives.

Dr. Emil Kakkis, who received his Ph.D. from the Department of Biological Chemistry, later worked in Neufeld’s UCLA lab as a medical genetics fellow, where he produced recombinant enzyme for the treatment of Hurler syndrome.

“Liz Neufeld was the scientists’ chairman,” Kakkis says. “She took care of new department recruits and set the pace for transforming a department that was in need of renovation to the high rank it holds today.”

Now a senior vice president at BioMarin Pharmaceutical, Kakkis built on his work with Neufeld to bring the therapeutic enzyme for Hurler’s syndrome to clinical testing and approval by the Food and Drug Administration in 1983.

“That was the ‘Big Event,’” recalls Neufeld. “My lab had conducted the basic science for the drug and proposed the treatment in the late 1960s. Emil led the clinical testing on the enzyme and made it into a pharmaceutical drug. I’m very happy about that.”

With characteristic determination, however, Neufeld always has her eye on the next research challenge.

“The enzyme used in MPS therapy isn’t able to penetrate the blood-brain barrier,” she explains. “As a result, current replacement therapy cannot help children with Sanfilippo syndrome, which leads to profound mental retardation. I’m working with Dr. Betty Chen in my lab to address this. We believe that our findings will apply to other neurological diseases.”

Neufeld’s contributions have earned her many of the highest honors in science, including the 1994 National Medal of Science, the 1990 California Scientist of the Year Award, the 1988 Wolf Prize in Medicine and the 1982 Albert Lasker Clinical Medical Research Award. She is an elected member of the National Academy of Science, the American Academy of Arts and Science and the Institute of Medicine.

“There are few scientists that have trained their enthusiasm and focus on a rare disease for so long,” notes Kakkis. “Liz’s career is all the more compelling because her work resulted in new therapies for patients with MPS disorders.”

Despite her prestigious accolades and rare talents, Neufeld is quick to deflect attention from herself and aim the spotlight at those around her.

“The exciting aspect of my job has been the opportunity to watch young scientists grow,” she says. “I’m most proud of recruiting some wonderful faculty. Biological Chemistry has been a fertile ground for cultivating senior leaders, such as associate deans and center directors like Lenny Rome and Judy Gasson. Our department has contributed a remarkable share of scientific leadership to the medical school.”

Neufeld is a modest and down-to-earth person. It doesn’t occur to her that these faculty members are following her leadership example. She’s too busy thinking about where she’ll take her research next.
Dr. Lawrence W. Bassett, and Dr. Jonathan S. Berek received the 2004 Sherman M. Mellinkoff Faculty Award. Considered the School of Medicine’s highest honor, the award celebrates an ongoing commitment to patients and medical education. Bassett is the Iris Cantor Professor of Breast Imaging and professor of radiological sciences. Berek is professor and chair of the College of Applied Anatomy, executive vice chair of obstetrics and gynecology, chief of gynecologic oncology and gynecology service and director, UCLA Women’s Reproductive Cancer Program.

Sally Blower, Ph.D., professor of biomathematics and a researcher at the UCLA AIDS Institute and UCLA Neuropsychiatric Institute, was appointed to a 12-person committee for the Institute of Medicine to study the potential impact of antiretroviral drugs in developing countries. The committee released its report on July 7, 2004.

Thomas J. Coates, Ph.D., professor of infectious diseases and an executive committee member of the UCLA AIDS Institute, received the Award for Distinguished Contributions to Research in Public Policy from the American Psychological Association. The award recognizes a psychologist who made an outstanding contribution to public policy research through a single extraordinary achievement or a lifetime of work.

Dr. Gregg C. Fonarow, Eliot Corday Chair in Cardiovascular Medicine and Science and professor of cardiology, received the 2004 Award of Meritorious Achievement from the American Heart Association (AHA) for his formative and continuing work with a national AHA program called Get With the GuidelinesSM—a new standard for cardiac care that effectively improves treatment for patients hospitalized with coronary artery disease.

Dr. Sanjiv (Sam) Gambhir, adjunct professor of molecular and medical pharmacology, received the 2004 Award for Distinguished Basic Scientist at the Academy of Molecular Imaging’s Annual Conference. The award recognizes outstanding achievement for developing new approaches for molecular imaging with optical and micro-computed tomography techniques.

Dr. Patricia Ganz, professor of health services in the School of Public Health and professor of medicine (hematology/oncology) in the David Geffen School of Medicine at UCLA and director of the Division of Cancer Prevention and Control Research at UCLA’s Jonsson Cancer Center, was honored by the UCLA Alumni Association for outstanding professional achievement. Ganz is a pioneer in the areas of quality of life for cancer survivors, quality of care for cancer patients, and cancer prevention.

Dr. Donald Jenden, emeritus professor in the Department of Molecular and Medical Pharmacology and former department chair, was honored for 50 years of service to UCLA. He is internationally recognized for his research on the neurotransmitter acetylcholine, which helped further illuminated understanding of cellular function, reduced disease, and enhanced quality of human life. Sachs’s research has led to clinical therapies for peptic ulcer disease, gastroesophageal reflux disease, esophageal cancer, and gastric cancer.

Dr. Thomas Klitzner, professor of pediatrics and chief of the Division of Pediatric Cardiology, has been appointed to serve on the 13-member L.A. Care Health Plan’s Board of Governors. The L.A. Care Health Plan is a local public agency and nonprofit health plan serving more than 750,000 residents of Los Angeles County.

Dr. Hillel Laks, professor and chief of cardiothoracic surgery and director of the Heart, Lung and Heart-Lung Transplant programs, was presented with the 2004 Medical Honoree Award at Camp del Corazon’s Gala del Sol event, which recognizes individuals who focus their work on pediatric cardiology and/or congenital heart disease. Laks has provided ongoing support of the children’s camp and has performed heart surgery for many of the patients attending the camp.

Shaleen Metten, Ph.D., associate professor of pathology and laboratory medicine, received the 2004 Award for Excellence in Education from the Kaiser Foundation. Metten was honored for planning new curriculum that integrates histology and anatomy.

Dr. George Sachs, Wilshire Chair of Medicine and professor of medicine and physiology, received a prestigious 2004 International Award from the Toronto-based Gairdner Foundation, which recognizes top researchers whose work has illuminated understanding of cellular function, reduced disease, and enhanced quality of human life. Sachs’s research has led to clinical therapies for peptic ulcer disease, gastroesophageal reflux disease, esophageal cancer, and gastric cancer.

Dr. Daniel Silverman, assistant professor of molecular and medical pharmacology, received an award for the top clinical abstract presented during the Academy of Molecular Imaging’s 2004 Annual...

faculty
Conference. His abstract compared the effectiveness of various tracers injected into patients to help identify and highlight brain tumors during positron emission tomography scans.

Dr. Dennis Slamon, professor of medicine, chief of hematology and oncology and director of Clinical/Translational Research at UCLA’s Jonsson Cancer Center, received the American Cancer Society’s highest honor bestowed on scientists. The Medal of Honor for clinical research recognizes his development of Herceptin, a molecularly targeted breast cancer therapy.

Dr. John Tormey, vice chair of medical education and professor of physiology, received the 2004 Award for Excellence in Education from the Kaiser Foundation. Tormey was recognized for overseeing the development of a new curriculum for medical students.

Ernest Wright, Ph.D., professor of physiology and Mellinkoff Professor in Medicine, was named a 2004 fellow of the Biophysical Society for his demonstrated excellence in science and commitment to the field of biophysics. Wright identified a new protein that senses changes in glucose, the blood sugar that fuels body function. Wright also received the 2004 Janssen Award in Gastroenterology for lifetime achievement in the digestive sciences.

Gail E. Wyatt, Ph.D., an associate director at the UCLA AIDS Institute and professor of psychiatry and biobehavioral sciences at the UCLA Neuropsychiatric Institute, was honored as a 2004 Woman of the Year by the Los Angeles County Commission for Women. The award recognizes women who have championed women’s issues to bring about social and economic change, served as outstanding role models, and achieved exceptional success within their professions advocating women’s rights.

Dr. Lonnie Zeltzer, professor of pediatrics, anesthesiology, and psychiatry and biobehavioral sciences and director of the Pediatric Pain Program, was selected for an inaugural Mayday Pain & Society Fellowship. The three-year program, established by the Mayday Fund, will train leaders in the pain management field to advocate key issues, such as the under-treatment of pain and pediatric pain.

Grants

UCLA researchers have received $1.5 million from the W.M. Keck Foundation to create a new interdisciplinary program that will use nanotechnology to understand the origin of the majority of solid tumor cancers. Dr. Leonard Rome, senior associate dean for research at the David Geffen School of Medicine at UCLA, is the principal investigator.

The UCLA Stroke Center received $5 million from the National Institutes of Health to establish a “Specialized Program of Translational Research in Acute Stroke (SPOTRIAS)” to promote rapid diagnosis and effective new treatments for stroke. UCLA Stroke Center researchers include Dr. Jeffrey L. Saver, Dr. Sidney Starkman, Dr. Reza Jahan, Dr. Chelsea Kidwell, Dr. Neil Martin, and Dr. Paul Vespa.

UCLA received $1.7 million from the National Institute on Aging for the UCLA Alzheimer’s Disease Research Center (ADRC). The center helps further understand the mechanisms and optimize the treatment of Alzheimer’s disease and is comprised of five cores: administrative, clinical, pathology, education/information transfer, and imaging and genetics. The principal investigator is Dr. Jeffrey Cummings, director of the ADRC.

Amgen has awarded UCLA researchers $903,210 to fund a clinical trial of chemotherapy plus or minus ABX-EGF for advanced non-small cell lung cancer. ABX-EGF is a fully humanized monoclonal antibody to epidermal growth factor receptor (EGFR). Despite advances in chemotherapy, the prognosis for patients with this cancer remains poor. Dr. Diane Prager, an associate professor of hematology/oncology, is the principal investigator.

The National Institutes of Health awarded the Los Angeles Pediatric AIDS Clinical Trial Unit $3 million for continued support of the project. Dr. Yvonne Bryson, chief of infectious diseases, professor of pediatrics, and a member of the UCLA AIDS Institute, is the principal investigator.

In Memoriam

Dr. Edward J. Hoffman, professor of molecular and medical pharmacology and radiological sciences, died July 1, 2004. Hoffman was known for his leadership and achieved international recognition and numerous awards in the field of medical imaging. His early research in medical imaging helped create the positron emission tomography (PET) scanner.

Dr. Samuel Kaplan, professor emeritus of pediatrics, died January 21, 2004. He was one of the first to establish pediatric cardiology as a medical specialty and was instrumental in developing the membrane oxygenator that is still an essential part of the surgical procedure for open-heart surgery.

Dr. Baldwin Gaylord Lamson, professor emeritus of pathology and laboratory medicine, died July 2, 2004. The first director of hospitals and clinics at UCLA, Lamson oversaw a period of rapid growth at UCLA Medical Center, which nearly doubled in size under his leadership from 1966 to 1980.

Dr. Arthur J. Moss, professor emeritus of pediatrics, died July 14, 2004. An international authority on pediatric hypertension, he studied cardiovascular changes and pulmonary artery pressure in newborns. His book, Heart Disease in Infants, Children and Adolescents, has become the standard text in pediatric cardiology.

Dr. Roy Walford, professor emeritus of pathology and laboratory medicine, died April 27, 2004. A pioneer of the calorie-restriction movement for longevity, Walford was the physician at Biosphere 2.
Events

On May 5, 2004, the UCLA/Orthopaedic Hospital Center for Cerebral Palsy (CCP) hosted a cocktail reception in a private, rooftop setting provided by Mr. Nick Mitsakos. Dr. Gerald A.M. Finerman, chair of the Department of Orthopaedic Surgery; Dr. James V. Luck, president, chief executive officer, and medical director of Orthopaedic Hospital; Dr. William Oppenheim, chief of the Division of Pediatrics and director of CCP; and Dr. Eileen Fowler, director of education and research for CCP, gave presentations. Coach John Wooden conversed with guests, posed for photographs, and gave an inspirational talk. Ms. Patty Civalleri, founder and president of 1-Take MultiMedia, contributed a video on the CCP. Cafe Formosa in Hollywood donated wines, and Hendel and Eric Schwartz provided goody-bags.

In Chicago on May 13, 2004, four dedicated volunteers – Judy Kruger, Janet McCann, Nina Vanderpoel, and Terri Weinstein – welcomed 900 guests to CIRQUE!, a multi-sensory evening of entertainment, food, and celebration to benefit the UCLA AIDS Institute. The co-chairs are part of a group of designers and artists who have mobilized their collective creativity to finance AIDS vaccine research in support of their mission to eradicate HIV globally. CIRQUE! raised more than $100,000 for UCLA’s efforts.

On May 25, 2004, the Friends of NPI presented a program at the UCLA Fowler Museum of Cultural History to benefit the UCLA Neuropsychiatric Institute. Featured speakers were Kay Redfield Jamison, Ph.D., professor of psychiatry at Johns Hopkins University; and Peter Whybrow, M.D., director of the NPI and executive chair and professor, Department of Psychiatry and Biobehavioral Sciences at UCLA. The program was presented in association with the NPI’s Tennenbaum Family Creativity Initiative. As Friends of NPI, community leaders, donors, grateful patients, and families support and promote the Institute’s clinical, research, and educational missions.

Held at the Beverly Hilton on June 5, 2004, the UCLA Center on Aging’s ICON Award event, sponsored by Janssen Pharmaceutica Products, L.P., raised $320,000 to support research on aging. Guests paid tribute to Gail and Gerald Oppenheimer, this year’s ICON Award recipients, who exemplify the Center’s motto of “Living Better Longer,” serve as outstanding role models of successful aging, and continue to make exceptional contributions to society.

On December 2, 2004, a private screening of “The Aviator,” a film about Howard Hughes, was held at Hollywood’s Egyptian Theatre to benefit UCLA’s Neuropsychiatric Institute. Prior to the show, director Martin Scorsese, star Leonardo DiCaprio, and actress Terry Moore (Mr. Hughes’s widow) participated with Drs. Peter Whybrow and Jeffrey Schwartz of the NPI in a panel discussion on obsessive-compulsive disorder. Dr. Schwartz served as Mr. DiCaprio’s expert advisor to master the role of the late billionaire, who suffered from this condition.

Join Friends of Mattel Children’s Hospital at UCLA

Friends of Mattel Children’s Hospital at UCLA has been created to support the services of one of the finest children’s hospitals in the western United States. “Friends” will keep the community involved in the cutting-edge research and extraordinary advances made possible by UCLA physicians and scientists on a daily basis.

You also can make a difference in the lives of young patients with an annual donation of $1,000 or more; those who contribute $10,000 and above are designated Circle of Stars members. All “Friends” will be listed in the annual honor roll. For more information, please call (310) 267-1836. The staff and patients of Mattel Children’s Hospital at UCLA say, “Thank you!”
Gifts

Terry S. Semel, chairman and CEO of Yahoo! Inc., and Jane Bovingdon Semel, founder of Jane Inc., have pledged $25 million to endow the UCLA Neuropsychiatric Institute. The gift will support research and community education programs for the treatment and understanding of such illnesses as autism, mood disorders, addiction, and Alzheimer’s disease. In recognition of such a significant contribution, the facility will be named the Jane and Terry Semel Institute of Neuroscience and Human Behavior at UCLA, under the direction of Dr. Peter Whybrow. Terry Semel was president and co-CEO of Warner Brothers until 1999. Jane Semel is a member of the School of Medicine’s Board of Visitors, Revlon UCLA Advisory Board, and External Advisory Committee in the UCLA Center for Human Nutrition. She will chair the Institute’s Board of Community Counselors. Mrs. Semel created FaceTheIssue.com, a series of highly acclaimed animated public service announcements that addressed a number of emotional and physical issues that affect young adults.

The Fu-Hsing and Jyu-Yuan Chen Family Foundation has made a generous pledge of $5 million to benefit Parkinson’s disease investigations in the Department of Neurology. UCLA will name the Fu-Hsing and Jyu-Yuan Chen Center for Translational Research in Parkinson’s Disease in recognition of this gift.

A gift of more than $2.4 million from the Louise T. Lucio Estate will provide unrestricted moneys for medical research, education, and other priority programs at the School of Medicine.

Wendy and Theo Kolokotrones, loyal supporters of the Jules Stein Eye Institute since 1994, have funded the Kolokotrones Chair in Ophthalmology with a $1-million gift. This endowment will underwrite the teaching and research of an internationally acclaimed cataract surgeon and scientist, thus advancing this field. Cataract is the most common blinding condition in the world, and corrective surgery is the only treatment option.

A $500,000 distribution from the Anna H. Bing Living Trust has created the Bing Scholarship Fund for Medical Students. This endowment will provide annual scholarships in perpetuity.

The future home of Ronald Reagan UCLA Medical Center is the grateful recipient of a $250,000 gift from the Maurice Amado Foundation, a longtime UCLA supporter. In recognition, the first floor west elevator lobby nearest the entrance to Mattel Children’s Hospital at UCLA will be named the Maurice Amado Foundation Elevator Lobby.

Steadfast friend and supporter, Mrs. Lena Longo has contributed $250,000 to the UCLA/Orthopaedic Hospital Center for Cerebral Palsy to establish the Lena Longo Endowment for Cerebral Palsy Research. This endowed fund will help support cutting-edge basic science and clinical research to benefit adult and pediatric patients with cerebral palsy and related movement disorders.

Recently, Mrs. Denalee and Dr. Milton Steinbein and family made a generous gift to name the first floor east elevator lobby in the future home of Ronald Reagan UCLA Medical Center. As a retired physician and wife of a physician, Dr. and Mrs. Steinbein realize the importance of having a state-of-the-art medical center in the community.

UCLA has received a generous bequest from the estate of Mr. Hoosmand Missaghieh. In honor of this bequest, the Cardiac Imaging Unit, to be located on the Second Floor of the future home of Ronald Reagan UCLA Medical Center, will be named for Mr. Missaghieh.

“I wanted to give back to UCLA because they gave my mom the gift of life,” says Joshua Goldberg, who donated $2,000 of his bar mitzvah money in April to the UCLA Renal Transplant Research and Education Fund in the Division of Nephrology.

In Memoriam

Genevieve S. May, M.D., a beloved and dedicated friend of the UCLA Neuropsychiatric Institute (NPI), passed away on February 28, 2004, at Mays’ Landing. It was in this small, private, peaceful setting that Dr. May and her husband Philip R. A. May, M.D., thrived, both in their professional pursuits and in their life together. Philip served as the clinical director of the NPI from 1962 to 1970, when he became director and then chief of staff of the West Los Angeles Veterans Administration Hospital. Following her husband’s death in 1986, Dr. May announced her intent to bequeath Mays’ Landing to the NPI for use as a study center. Since then, she has opened her doors to UCLA faculty, staff, and students for meetings, retreats, and study sessions. The Philip and Genevieve May Psychiatric Endowment Fund was established at UCLA for the financial support and maintenance of Mays’ Landing.

Carlo Mariotti passed away on August 5, 2004, in Rome, following a 14-year battle with various cancers. He was a stone artisan whose Italian travertine can be found on The Getty Center, Walt Disney Concert Hall, Lincoln Center, the Bank of China, the Spanish Steps in Rome, and many other grand places worldwide. As a grateful UCLA patient, Mr. Mariotti, the “Marble Man,” offered more than three-million pounds of travertine at a great discount for the future home of Ronald Reagan UCLA Medical Center. He is survived by his wife, four children, and seven grandchildren.

Pauline and Harold Price were dedicated supporters of the Jules Stein Eye Institute for more than 30 years. They passed away on April 19 and January 27, 2004, respectively. Through the Louis and Harold Price Foundation, established in 1951 by Harold and his father, the Prices created an endowed fellowship and endowed chair, as well as the Price Retina Research Fund. Louis Price’s bakery and ice cream supply business (Joe Lowe Corporation) was famous for the promotion of the Popsicle.
The Alumni Class Campaign for Student Scholarships

To build upon the 50th Anniversary Campaign for Student Scholarships, which raised more than $1.5 million, the UCLA MAA launched the Alumni Class Campaign for Student Scholarships. One of the aims of the MAA is to offset the tremendous cost of a medical education for needy students, many of whom face debts of $100,000 or more at graduation. Sufficient funding assistance to meet each medical student’s financial need will keep his/her debt at a minimal and manageable level, and keep career paths open.

The Alumni Class Campaign encourages reunion classes to establish individual class scholarships to create permanently endowed funds. By reducing financial burdens, alumni can make a real difference in the lives of outstanding and deserving UCLA medical students. Many generous gifts already have been received, and many classes are working toward this goal.

NEW SENIOR CLASS TRADITION:

The newest aspect of the Alumni Class Campaign is the commitment of seniors to support scholarships. The Class of 2003 started this tradition, which will provide scholarships for future medical students at UCLA. Benjamin Cowan, M.D. ’75, MAA Board President, helped initiate the Senior Class Endowment program introduced by Dean Gerald S. Levey. The Class of 2003 Medical Student Scholarship Fund was established on Match Day 2003 with an initial goal of $1,000; through matching gifts, it has grown significantly.

The Class of 2004 aimed for $1,800, and at the 2004 Senior Class Breakfast proudly announced that it had raised $2,200 for the Class of 2004 Medical Student Scholarship Fund. Drs. Barbara and Gerald Levey, Dr. Neil Parker, and Dr. Cowan made matching gifts, and Dr. Livia Solti-Bohman also contributed to this fund.

“If we can do that every year with each graduating class,” says Dr. Cowan, “the growth of these initial endowments will be quite dramatic over time, providing more funds for scholarships.”

Drs. Barbara and Gerald Levey (right) receive the Class of 2004’s check from Class President Jonathan Grein, M.D. ’04, while Ben Cowan, M.D. ’75, (center) and Peggy Ibarra, M.D. ’04, look on.
Conference on Career Choices

On January 8, 2005, the Medical Alumni Association (MAA) once again hosted its most enduring event, the Conference on Career Choices in Medicine. This annual gathering provides UCLA, King/Drew Medical Center, and UC Riverside students with an opportunity to meet alumni from a broad range of medical specialties and related subspecialties, from Internal Medicine, Pediatrics, Surgery, and Diagnostic Imaging to Ophthalmology, Obstetrics/Gynecology, and Neurology.

MAA conference Chair James Tipton, M.D. '80, welcomed participants, and students attended three one-hour successive workshop sessions of their choosing. Round-table discussions with the panelists during lunch enabled students to learn about additional specialties. The half-day event ended with a drawing for prizes, thanks to the generosity of local merchants.

If you would like to participate on a panel at the 2006 Conference, please contact Connie Firestone in the MAA Office at (310) 267-1845. All alumni, faculty members, and community physicians are welcome and appreciated.

Reunion 2004

The 2004 reunion was a great success, with more than 220 alumni and spouses who returned to campus for a tremendous weekend of R&R (Recreation & Reminiscing) with their medical school classmates. A casual all-classes reception took place at the Luxe-Summit Hotel. Many alumni and their families also enjoyed a campus walking tour and preview of the future home of Ronald Reagan UCLA Medical Center or a trip to the Getty Center. The class dinners were held at the UCLA Faculty Center on Saturday night. Brunch at the Santa Monica Pier on Sunday morning capped off a truly memorable weekend.

SAVE THE DATE: April 8-10, 2005

You are a lifetime member of the UCLA Medical Alumni Association (MAA) if you are a School of Medicine M.D. or Ph.D. graduate, past intern or resident, faculty member, or emeritus faculty member.